High tech
For the computer chess program, see HiTech.
“ | It is not clear whether the term comes from the high technologies flourishing in the glass rectangles along the route or from the Midas touch their entrepreneurs have shown in starting new companies. | ” |
Before 1970, the term "high technology" appeared a total of only 26 times; during the 1970s, 450 times; during the 1980s, over 4000 times. As of 2006, any technology from the year 2000 onward may be considered high tech.
Economy
Because the high-tech sector of the economy develops or uses the most advanced technology known, it is often seen as having the most potential for future growth. This perception has led to high investment in high-tech sectors of the economy. High-tech startup enterprises receive a large portion of venture capital. However, if, as has happened in the past, investment exceeds actual potential, then investors can lose all or most of their investment. High tech is often viewed as high risk, but offering the opportunity for high profits.Like Big Science, high technology is an international phenomenon, spanning continents, epitomized by the worldwide communication of the Internet. Thus a multinational corporation might work on a project 24 hours a day, with teams waking and working with the advance of the sun across the globe; such projects might be in software development or in the development of an integrated circuit. The help desks of a multinational corporation might thus employ, successively, teams in Kenya, Brazil, the Philippines, or India, with the only requirement fluency in the mother tongue, be it Spanish, Portuguese or English.
OECD has two different approaches: sector and product (industry) approaches.
High-tech sectors
The sector approach classifies industries according their technology intensity, product approach according to finished products.- Aerospace technology
- Artificial intelligence
- Biotechnology
- Energy
- Instrumentation
- Nanotechnology
- Nuclear physics
- Optoelectronics
- Robotics
- Telecommunications
High-tech industries
Further analysis from OECD has indicated that using research intensity as only industry classification indicator is also possible. The OECD does not only take the manufacturing but also the usage rate of technology into account. The OECD's classification is following (stable since 1973):Industry name | Total R&D-intensity (1999, in %) | ISIC Rev. 3 |
---|---|---|
High-Technology | ||
Pharmaceuticals | 10.46 | 2423 |
Aircraft & spacecraft | 10.29 | 353 |
Medical, precision & optimal instruments | 9.69 | 33 |
Radio, television & communication equipment | 7.48 | 32 |
Office, accounting & computing machinery | 7.21 | 30 |
Medium-High-Technology | ||
Electrical machinery & apparatus | 3.60 | 31 |
Motor vehicles, trailers & semi-trailers | 3.51 | 34 |
Railroad & transport equipment | 3.11 | 352+359 |
Chemical & chemical products | 2.85 | 24 (excl. 2423) |
Machinery & equipment | 2.20 | 29 |
High-tech society
An overall society based in high-tech is something generally unattainable by the definition comprising its scarcity among every technology available. Many countries like USA, Japan, Germany, South Korea, Taiwan, Finland, Sweden or France be in general considered high-tech societies in relation to other countries, since it is common for its citizens having access to technology that is presently at the cutting edge, in consumer's terms. Research oriented institutions such as ESA, MITRE, NASA, CERN, and universities with high research activity such as MIT might be considered high-tech microssocieties in relation to the general surrounding socio-economic region or overall activity sector. An organization's department dealing with the latest technology in their projects, may also be considered a high-tech microssociety within the organization's and partners' scope. Students and faculty related with ENAEE or ABET accredited programs might be considered high-tech society members, regarding other traditional degrees. In industry, companies working in the leading edge may be considered high-tech societies along with its main competitors, regarding the rest of the sectorial competition.Artificial intelligence
Artificial intelligence (AI) is the intelligence of machines and the branch of computer science that aims to create it. Textbooks define the field as "the study and design of intelligent agents,"here an intelligent agent is a system that perceives its environment and takes actions that maximize its chances of success.John McCarthy, who coined the term in 1956, defines it as "the science and engineering of making intelligent machines."The field was founded on the claim that a central property of humans, intelligence—the sapience of Homo sapiens—can be so precisely described that it can be simulated by a machine. This raises philosophical issues about the nature of the mind and limits of scientific hubris, issues which have been addressed by myth, fiction and philosophy since antiquity. Artificial intelligence has been the subject of optimism, but has also suffered setbacks and, today, has become an essential part of the technology industry, providing the heavy lifting for many of the most difficult problems in computer science.
AI research is highly technical and specialized, deeply divided into subfields that often fail to communicate with each other.Subfields have grown up around particular institutions, the work of individual researchers, the solution of specific problems, longstanding differences of opinion about how AI should be done and the application of widely differing tools. The central problems of AI include such traits as reasoning, knowledge, planning, learning, communication, perception and the ability to move and manipulate objects. General intelligence (or "strong AI") is still a long-term goal of (some) research
History
Thinking machines and artificial beings appear in Greek myths, such as Talos of Crete, the golden robots of Hephaestus and Pygmalion's Galatea Human likenesses believed to have intelligence were built in every major civilization: animated statues were worshipped in Egypt and Greece and humanoid automatons were built by Yan Shi, Hero of Alexandria,Al-Jazari and Wolfgang von Kempelen. It was also widely believed that artificial beings had been created by Jābir ibn Hayyān,Judah Loew and Paracelsus By the 19th and 20th centuries, artificial beings had become a common feature in fiction, as in Mary Shelley's Frankenstein or Karel Čapek's R.U.R. (Rossum's Universal Robots). Pamela McCorduck argues that all of these are examples of an ancient urge, as she describes it, "to forge the gods". Stories of these creatures and their fates discuss many of the same hopes, fears and ethical concerns that are presented by artificial intelligence.Mechanical or "formal" reasoning has been developed by philosophers and mathematicians since antiquity. The study of logic led directly to the invention of the programmable digital electronic computer, based on the work of mathematician Alan Turing and others. Turing's theory of computation suggested that a machine, by shuffling symbols as simple as "0" and "1", could simulate any conceivable act of mathematical deduction. This, along with recent discoveries in neurology, information theory and cybernetics, inspired a small group of researchers to begin to seriously consider the possibility of building an electronic brain.
The field of AI research was founded at a conference on the campus of Dartmouth College in the summer of 1956.The attendees, including John McCarthy, Marvin Minsky, Allen Newell and Herbert Simon, became the leaders of AI research for many decades. They and their students wrote programs that were, to most people, simply astonishing: computers were solving word problems in algebra, proving logical theorems and speaking English. By the middle of the 1960s, research in the U.S. was heavily funded by the Department of Defense and laboratories had been established around the world.AI's founders were profoundly optimistic about the future of the new field: Herbert Simon predicted that "machines will be capable, within twenty years, of doing any work a man can do" and Marvin Minsky agreed, writing that "within a generation ... the problem of creating 'artificial intelligence' will substantially be solved".
They had failed to recognize the difficulty of some of the problems they faced.In 1974, in response to the criticism of England's Sir James Lighthill and ongoing pressure from Congress to fund more productive projects, the U.S. and British governments cut off all undirected, exploratory research in AI. The next few years, when funding for projects was hard to find, would later be called an "AI winter".
In the early 1980s, AI research was revived by the commercial success of expert systems,a form of AI program that simulated the knowledge and analytical skills of one or more human experts. By 1985 the market for AI had reached over a billion dollars. At the same time, Japan's fifth generation computer project inspired the U.S and British governments to restore funding for academic research in the field.However, beginning with the collapse of the Lisp Machine market in 1987, AI once again fell into disrepute, and a second, longer lasting AI winter began.
In the 1990s and early 21st century, AI achieved its greatest successes, albeit somewhat behind the scenes. Artificial intelligence is used for logistics, data mining, medical diagnosis and many other areas throughout the technology industry.The success was due to several factors: the incredible power of computers today (see Moore's law), a greater emphasis on solving specific subproblems, the creation of new ties between AI and other fields working on similar problems, and above all a new commitment by researchers to solid mathematical methods and rigorous scientific standards
Deduction, reasoning, problem solving
Early AI researchers developed algorithms that imitated the step-by-step reasoning that humans were often assumed to use when they solve puzzles, play board games or make logical deductions. By the late 1980s and '90s, AI research had also developed highly successful methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.For difficult problems, most of these algorithms can require enormous computational resources — most experience a "combinatorial explosion": the amount of memory or computer time required becomes astronomical when the problem goes beyond a certain size. The search for more efficient problem solving algorithms is a high priority for AI research.
Human beings solve most of their problems using fast, intuitive judgments rather than the conscious, step-by-step deduction that early AI research was able to model.AI has made some progress at imitating this kind of "sub-symbolic" problem solving: embodied agent approaches emphasize the importance of sensorimotor skills to higher reasoning; neural net research attempts to simulate the structures inside human and animal brains that give rise to this skill.
Knowledge representation
Main articles: Knowledge representation and Commonsense knowledge
Knowledge representation and knowledge engineering are central to AI research. Many of the problems machines are expected to solve will require extensive knowledge about the world. Among the things that AI needs to represent are: objects, properties, categories and relations between objects;situations, events, states and time;causes and effects; knowledge about knowledge (what we know about what other people know); and many other, less well researched domains. A complete representation of "what exists" is an ontology(borrowing a word from traditional philosophy), of which the most general are called upper ontologies.Among the most difficult problems in knowledge representation are:
- Default reasoning and the qualification problem
- Many of the things people know take the form of "working assumptions." For example, if a bird comes up in conversation, people typically picture an animal that is fist sized, sings, and flies. None of these things are true about all birds. John McCarthy identified this problem in 1969 as the qualification problem: for any commonsense rule that AI researchers care to represent, there tend to be a huge number of exceptions. Almost nothing is simply true or false in the way that abstract logic requires. AI research has explored a number of solutions to this problem.
- The breadth of commonsense knowledge
- The number of atomic facts that the average person knows is astronomical. Research projects that attempt to build a complete knowledge base of commonsense knowledge (e.g., Cyc) require enormous amounts of laborious ontological engineering — they must be built, by hand, one complicated concept at a time.A major goal is to have the computer understand enough concepts to be able to learn by reading from sources like the internet, and thus be able to add to its own ontology.
- The subsymbolic form of some commonsense knowledge
- Much of what people know is not represented as "facts" or "statements" that they could actually say out loud. For example, a chess master will avoid a particular chess position because it "feels too exposed" or an art critic can take one look at a statue and instantly realize that it is a fake. These are intuitions or tendencies that are represented in the brain non-consciously and sub-symbolically Knowledge like this informs, supports and provides a context for symbolic, conscious knowledge. As with the related problem of sub-symbolic reasoning, it is hoped that situated AI or computational intelligence will provide ways to represent this kind of knowledge.
Planning
Intelligent agents must be able to set goals and achieve them. They need a way to visualize the future (they must have a representation of the state of the world and be able to make predictions about how their actions will change it) and be able to make choices that maximize the utility (or "value") of the available choices. In classical planning problems, the agent can assume that it is the only thing acting on the world and it can be certain what the consequences of its actions may be. However, if this is not true, it must periodically check if the world matches its predictions and it must change its plan as this becomes necessary, requiring the agent to reason under uncertainty.Multi-agent planning uses the cooperation and competition of many agents to achieve a given goal. Emergent behavior such as this is used by evolutionary algorithms and swarm intelligence.
Learning
Machine learning has been central to AI research from the beginning. Unsupervised learning is the ability to find patterns in a stream of input. Supervised learning includes both classification and numerical regression. Classification is used to determine what category something belongs in, after seeing a number of examples of things from several categories. Regression takes a set of numerical input/output examples and attempts to discover a continuous function that would generate the outputs from the inputs. In reinforcement learning the agent is rewarded for good responses and punished for bad ones. These can be analyzed in terms of decision theory, using concepts like utility. The mathematical analysis of machine learning algorithms and their performance is a branch of theoretical computer science known as computational learning theory.Natural language processing
ASIMO uses sensors and intelligent algorithms to avoid obstacles and navigate stairs.
Main article: Natural language processing
Natural language processing gives machines the ability to read and understand the languages that humans speak. Many researchers hope that a sufficiently powerful natural language processing system would be able to acquire knowledge on its own, by reading the existing text available over the internet. Some straightforward applications of natural language processing include information retrieval (or text mining) and machine translation.Motion and manipulation
The Care-Providing robot FRIEND uses sensors like cameras and intelligent algorithms to control the manipulator in order to support disabled and elderly people in their daily life activities.
Main article: Robotics
The field of robotics is closely related to AI. Intelligence is required for robots to be able to handle such tasks as object manipulation and navigation, with sub-problems of localization (knowing where you are), mapping (learning what is around you) and motion planning (figuring out how to get there).Perception
Machine perception is the ability to use input from sensors (such as cameras, microphones, sonar and others more exotic) to deduce aspects of the world. Computer vision is the ability to analyze visual input. A few selected subproblems are speech recognition, facial recognition and object recognition.Social intelligence
Kismet, a robot with rudimentary social skills
Creativity
A sub-field of AI addresses creativity both theoretically (from a philosophical and psychological perspective) and practically (via specific implementations of systems that generate outputs that can be considered creative). A related area of computational research is Artificial Intuition and Artificial Imagination.General intelligence
Most researchers hope that their work will eventually be incorporated into a machine with general intelligence (known as strong AI), combining all the skills above and exceeding human abilities at most or all of them. A few believe that anthropomorphic features like artificial consciousness or an artificial brain may be required for such a project.Many of the problems above are considered AI-complete: to solve one problem, you must solve them all. For example, even a straightforward, specific task like machine translation requires that the machine follow the author's argument (reason), know what is being talked about (knowledge), and faithfully reproduce the author's intention (social intelligence). Machine translation, therefore, is believed to be AI-complete: it may require strong AI to be done as well as humans can do it
Approaches
There is no established unifying theory or paradigm that guides AI research. Researchers disagree about many issues. A few of the most long standing questions that have remained unanswered are these: should artificial intelligence simulate natural intelligence, by studying psychology or neurology? Or is human biology as irrelevant to AI research as bird biology is to aeronautical engineering?Can intelligent behavior be described using simple, elegant principles (such as logic or optimization)? Or does it necessarily require solving a large number of completely unrelated problems?Can intelligence be reproduced using high-level symbols, similar to words and ideas? Or does it require "sub-symbolic" processing?Cybernetics and brain simulation
Main articles: Cybernetics and Computational neuroscience
There is no consensus on how closely the brain should be simulated.
Symbolic
Main article: Good old fashioned artificial intelligence
When access to digital computers became possible in the middle 1950s, AI research began to explore the possibility that human intelligence could be reduced to symbol manipulation. The research was centered in three institutions: CMU, Stanford and MIT, and each one developed its own style of research. John Haugeland named these approaches to AI "good old fashioned AI" or "GOFAI".- Cognitive simulation
- Economist Herbert Simon and Alan Newell studied human problem solving skills and attempted to formalize them, and their work laid the foundations of the field of artificial intelligence, as well as cognitive science, operations research and management science. Their research team used the results of psychological experiments to develop programs that simulated the techniques that people used to solve problems. This tradition, centered at Carnegie Mellon University would eventually culminate in the development of the Soar architecture in the middle 80s.
- Logic based
- Unlike Newell and Simon, John McCarthy felt that machines did not need to simulate human thought, but should instead try to find the essence of abstract reasoning and problem solving, regardless of whether people used the same algorithms. His laboratory at Stanford (SAIL) focused on using formal logic to solve a wide variety of problems, including knowledge representation, planning and learning. Logic was also focus of the work at the University of Edinburgh and elsewhere in Europe which led to the development of the programming language Prolog and the science of logic programming.
- "Anti-logic" or "scruffy"
- Researchers at MIT (such as Marvin Minsky and Seymour Papert) found that solving difficult problems in vision and natural language processing required ad-hoc solutions – they argued that there was no simple and general principle (like logic) that would capture all the aspects of intelligent behavior. Roger Schank described their "anti-logic" approaches as "scruffy" (as opposed to the "neat" paradigms at CMU and Stanford). Commonsense knowledge bases (such as Doug Lenat's Cyc) are an example of "scruffy" AI, since they must be built by hand, one complicated concept at a time.
- Knowledge based
- When computers with large memories became available around 1970, researchers from all three traditions began to build knowledge into AI applications.This "knowledge revolution" led to the development and deployment of expert systems (introduced by Edward Feigenbaum), the first truly successful form of AI software.The knowledge revolution was also driven by the realization that enormous amounts of knowledge would be required by many simple AI applications.
Sub-symbolic
During the 1960s, symbolic approaches had achieved great success at simulating high-level thinking in small demonstration programs. Approaches based on cybernetics or neural networks were abandoned or pushed into the background.By the 1980s, however, progress in symbolic AI seemed to stall and many believed that symbolic systems would never be able to imitate all the processes of human cognition, especially perception, robotics, learning and pattern recognition. A number of researchers began to look into "sub-symbolic" approaches to specific AI problems.- Bottom-up, embodied, situated, behavior-based or nouvelle AI
- Researchers from the related field of robotics, such as Rodney Brooks, rejected symbolic AI and focused on the basic engineering problems that would allow robots to move and survive. Their work revived the non-symbolic viewpoint of the early cybernetics researchers of the 50s and reintroduced the use of control theory in AI. This coincided with the development of the embodied mind thesis in the related field of cognitive science: the idea that aspects of the body (such as movement, perception and visualization) are required for higher intelligence.
- Computational Intelligence
- Interest in neural networks and "connectionism" was revived by David Rumelhart and others in the middle 1980s. These and other sub-symbolic approaches, such as fuzzy systems and evolutionary computation, are now studied collectively by the emerging discipline of computational intelligence.
Statistical
In the 1990s, AI researchers developed sophisticated mathematical tools to solve specific subproblems. These tools are truly scientific, in the sense that their results are both measurable and verifiable, and they have been responsible for many of AI's recent successes. The shared mathematical language has also permitted a high level of collaboration with more established fields (like mathematics, economics or operations research). Stuart Russell and Peter Norvig describe this movement as nothing less than a "revolution" and "the victory of the neats."Integrating the approaches
- Intelligent agent paradigm
- An intelligent agent is a system that perceives its environment and takes actions which maximizes its chances of success. The simplest intelligent agents are programs that solve specific problems. The most complicated intelligent agents are rational, thinking humans. The paradigm gives researchers license to study isolated problems and find solutions that are both verifiable and useful, without agreeing on one single approach. An agent that solves a specific problem can use any approach that works — some agents are symbolic and logical, some are sub-symbolic neural networks and others may use new approaches. The paradigm also gives researchers a common language to communicate with other fields—such as decision theory and economics—that also use concepts of abstract agents. The intelligent agent paradigm became widely accepted during the 1990s.
- Agent architectures and cognitive architectures
- Researchers have designed systems to build intelligent systems out of interacting intelligent agents in a multi-agent system.A system with both symbolic and sub-symbolic components is a hybrid intelligent system, and the study of such systems is artificial intelligence systems integration. A hierarchical control system provides a bridge between sub-symbolic AI at its lowest, reactive levels and traditional symbolic AI at its highest levels, where relaxed time constraints permit planning and world modelling.Rodney Brooks' subsumption architecture was an early proposal for such a hierarchical system